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Repurposing Artificial Intelligence Tools 
for Disease Modeling: Case Study of Face 
Recognition Deficits in Neurodegenerative 
Diseases
Gargi Singh1 and Murali Ramanathan1,*

Face recognition deficits occur in diseases such as prosopagnosia, autism, Alzheimer’s disease, and dementias. 
The objective of this study was to evaluate whether degrading the architecture of artificial intelligence (AI) face 
recognition algorithms can model deficits in diseases. Two established face recognition models, convolutional- 
classification neural network (C- CNN) and Siamese network (SN), were trained on the FEI faces data set (~ 14 
images/person for 200 persons). The trained networks were perturbed by reducing weights (weakening) and node 
count (lesioning) to emulate brain tissue dysfunction and lesions, respectively. Accuracy assessments were used as 
surrogates for face recognition deficits. The findings were compared with clinical outcomes from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) data set. Face recognition accuracy decreased gradually for weakening 
factors less than 0.55 for C- CNN, and 0.85 for SN. Rapid accuracy loss occurred at higher values. C- CNN accuracy 
was similarly affected by weakening any convolutional layer whereas SN accuracy was more sensitive to weakening 
of the first convolutional layer. SN accuracy declined gradually with a rapid drop when nearly all nodes were lesioned. 
C- CNN accuracy declined rapidly when as few as 10% of nodes were lesioned. CNN and SN were more sensitive 
to lesioning of the first convolutional layer. Overall, SN was more robust than C- CNN, and the findings from SN 
experiments were concordant with ADNI results. As predicted from modeling, brain network failure quotient was 
related to key clinical outcome measures for cognition and functioning. Perturbation of AI networks is a promising 
method for modeling disease progression effects on complex cognitive outcomes.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
	; Artificial intelligence (AI) algorithms have become increas-

ingly proficient at tasks, such as face recognition, interpreting 
handwriting, and conversation, which are important features of 
human cognition and functioning. People with neurodegenera-
tive diseases, such as Alzheimer’s disease (AD), often experience 
cognitive deficits in these domains.
WHAT QUESTION DID THIS STUDY ADDRESS?
	; To evaluate whether degrading the architecture of AI 

methods effective at face recognition can model face rec-
ognition deficits in disease states. The larger goal was to 
evaluate whether this novel AI- based strategy could be used 
to build models for complex cognitive outcome measures 
in AD.

WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
	; The results indicate that perturbing the architecture of AI 

methods can emulate the emergence of face recognition deficits. 
Neuroimaging- derived measures of network failure are associ-
ated with neuropsychological outcome measures of cognition 
and function that are commonly used in AD clinical trials.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
	; The results show that the failure of neural signaling net-

works due to neurodegenerative processes can account for cog-
nitive deficits in activities, such as face recognition, that are 
important for patient functioning in AD. The findings repre-
sent an innovative strategy for building models for cognitive 
outcomes in neurodegenerative diseases.

ARTICLE

mailto:
mailto:murali@buffalo.edu
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpt.2987&domain=pdf&date_stamp=2023-07-14


CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 114 NUMBER 4 | October 2023 863

Diseases that cause neurodegeneration in brain tissue adversely 
affect neurocognitive processing and result in cognitive decline. 
There are no treatments for reversing neurodegeneration that 
is the pathophysiological hallmark of many diseases including 
Alzheimer’s disease (AD), Parkinson’s disease, multiple sclerosis, 
and dementias.

Face recognition is a cognitive function that is critical for every-
day social and interpersonal interactions. Visual cues from faces 
are also used to infer emotion. Face recognition deficits are the 
defining clinical feature in developmental and acquired forms of 
prosopagnosia. People with prosopagnosia can adequately recog-
nize other everyday objects, and rely on non- facial cues (e.g., voice, 
gait, etc.) to recognize familiar individuals.1,2 Many other neurode-
velopmental and neurodegenerative diseases ranging from autism 
spectrum disorder to AD can affect the ability to identify familiar 
faces, and this can severely impact the quality of the patient’s so-
cial interactions and cause emotional pain to family members and 
caregivers.

The potential utility of artificial intelligence (AI) models, par-
ticularly neural networks3 for delineating the hidden computa-
tional frameworks used by the brain to perform cognitive tasks 
has long been recognized but were constrained by hardware lim-
itations, lack of training data, and computational complexity.4 As 
early as 1980, Fukushima proposed the “neurocognitron,” a three- 
layer convolutional neural network architecture inspired by a rep-
resentation of visual signal transduction in the eyes.5 Physiological 
activity evoked in different brain regions by cognitive tasks can 
now be imaged with electroencephalograms (EEGs), functional 
magnetic resonance imaging (fMRI), and positron- emission to-
mography (PET). Brain activity data are typically analyzed using 
correlation matrices, network analyses, and Bayesian models to 
identify the inter- dependencies between different regions when 
performing cognitive tasks.6,7 In clinical practice, EEG and fMRI 
mapping are used to localize the brain regions involved with epilep-
togenic activity and speech to guide resection surgery for epilepsy.8 
Computational and cognitive neuroscience take bottom- up and 
top- down approaches4 that are complementary with each other, 
and with emerging deep learning- driven pattern recognition and 
generative AI methods.

AI methods have become proficient at face recognition and 
are being deployed in real- world applications, such as photo-
graphic image curation, crime fighting, and national security. 
Convolutional neural networks are particularly effective for face 
recognition (and other object recognition) tasks from images be-
cause they can reduce data complexity while retaining key aspects 
of the local correlation structure; they are also capable of learning, 
and robust to translation, scaling, and distortions of the pattern. 
However, there are knowledge gaps that need to be bridged so that 
AI can be leveraged in clinical pharmacology for building useful 
models for face recognition and other cognitive deficits in neuro-
degenerative diseases.

The specific goal was to assess whether AI approaches could 
be utilized to model face recognition deficits in neurodegener-
ative diseases. We obtained performance accuracy for two AI 
face recognition models, convolutional- classification neural 
network (C- CNN) and Siamese network (SN), that implement 

convolutional neural networks with different architectures. The 
architecture was perturbed, and the ensuing loss of accuracy was 
used to emulate the effects of neurodegeneration in causing face 
recognition deficits. The parallels between performance loss in 
AI models and the severity of deficits in neurological diseases 
were assessed.

METHODS
Face recognition algorithms
We assessed C- CNN and SN developed by others for face recognition. 
The structures of C- CNN and SN are summarized in Table 1.

The C- CNN had three convolutional layers for feature extraction fol-
lowed by two dense layers. Each convolutional layer was followed by a 
pooling layer to reduce the size of feature maps. The number of neurons in 
the final layer was set to the number of subjects to be identified –  this was 
200 in this case. The output of the final layer was softmax transformed. 
The peak value from the softmax probability mass vector was used to 
identify the subject of the test image. The C- CNN code was sourced 
from ref. 9.

Table 1 Details of the architecture of the neural networks

Layer Structure Parameters

Convolutional- classification neural network structure

Layers 1– 3 Convolution Filters: 32; filter size: 3 × 3
stride: (1, 1); activation: linear

Pooling Type: max; size: 2 × 2; stride: 
(1, 1)

Layer 4 Dense layer Neurons: 512

Dropout Dropout Used only during training, to 
avoid overfitting

Layer 5 Dense layer Neurons: 200 (equivalent to 
number of classes)

Siamese network structure

Layer 1 Convolution Number of filters: 96; filter 
size: 11 × 11

stride: (4, 4); activation: ReLU

Batch 
normalization

Momentum: 0.1

Pooling type: max; size: 3 × 3; stride: 
(2, 2)

Layer 2 Convolution Number of filters: 256; filter 
size: 5 × 5

stride: (1, 1); activation: ReLU

Batch 
normalization

Momentum: 0.1

Pooling Type: max; size: 3 × 3; stride: 
(2, 2)

Layer 3 Convolution Number of filters: 384; filter 
size: 3 × 3

stride: (1, 1); activation: ReLU

Batch 
normalization

Momentum: 0.1

Layer 4 Dense layer Neurons: 1024

Layer 5 Dense layer Neurons: 256

Layer 6 Dense layer Neurons: 16

Batch Normalization: Applied before passing the inputs to the activation 
function. Activation: Applied after convolution.
ReLU, rectified linear units.
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Each arm of the SN was comprised of three convolutional and two 
pooling layers followed by three dense layers. The distance between 
the final output vector from each arm was computed as a measure of 
dissimilarity between the two faces. Binary classification based on this 
distance was used to assess whether the two faces were from the same 
subject or not.

The SN code was sourced from ref. 10. This code was modified by 
adding a batch normalization layer before each activation layer and by 
increasing the size of the last layer from 2 neurons to 16 neurons. Batch 
normalization improves the learning rate by standardizing input values 
and addressing internal covariate shift between layers. We reasoned that 
a higher- dimensional output would be better at encoding nuanced differ-
ences between faces. Experiments (data not shown) confirmed that these 
changes improved the performance of SN.

The minimum of the distances of the test image from the set of three 
reference images (frontal, left profile, and right profile) for each subject 
was computed. The subject with the smallest distance from the test image 
was identified as the subject of the test image.

For C- CNN and SN, face recognition accuracy was defined as the frac-
tion of correctly identified test images.

Face data set
The FEI face database (https://fei.edu.br/~cet/faced ataba se.html), 
which contains color photograph images of 200 subjects (100 male and 
100 female subjects) against a white background, was used.11,12 The data 
set has ~ 14 images per subject that differ in face angles, facial expres-
sions, and lighting.

Image data pre- processing. Images were cropped to contain faces 
using the Viola- Jones Haar cascade face detector.13 Images were then re-
sized to 100 × 100 pixels, converted to grayscale, and pixel intensity was 
normalized using the median intensity.

Network training

C- CNN training. The test data set consisted of three images for each sub-
ject. The training set was comprised of the remaining images.

Data augmentation was used for the C- CNN training set because 
the C- CNN, which relies on a classification strategy, is susceptible to 
over- fitting when trained on inadequate data. Augmentation increases 
training sample size and variety in the training input and can improve ro-
bustness of the C- CNN. Built- in transforms in the Pytorch Dataloader 
were used to produce 10 additional images for each image in the training 
set.

The model was trained on the augmented training set for 50 epochs 
with a batch size of 32, and saved whenever there was an increase in val-
idation accuracy.

SN training. The SN training set was comprised of images for 197 
subjects; 3 subjects were withheld from the training process. SN was 
trained in batches of size 64. The contrastive loss- based training pro-
cess reduces the distance for image pairs from the same subject and 
increases the distance for image pairs from differing subjects. The SN 
was trained for 50 epochs. After each batch of training, a test batch of 
size 8 was loaded by sourcing images from the test subjects that were 
withheld from training. The model was saved whenever the contras-
tive loss decreased.

Effect of perturbing trained C- CNN and SN
We compared the effects of systematically perturbing the network 
architecture of the trained C- CNN and SN on the accuracy of face 
recognition to the corresponding unperturbed trained network. The 
overall goal was to assess the robustness to perturbations and to as-
sess whether the repurposing of AI face recognition algorithms could 

plausibly emulate clinical features of face recognition deficits in neu-
rological diseases.

Accuracy experiments were conducted on a common subset of 20 in-
dividuals (10 male and 10 female individuals) for the C- CNN and SN to 
manage time needed for the computations.

In “weakening” experiments, all node weights of the trained C- CNN or 
SN were multiplied by a weakening factor, with values between 0 and 1 in 
increments of 0.05. A weakening factor value of 1 denotes complete loss of 
the weights and a weakening factor value of zero denotes no change to the 
trained network weights.

In “lesioning” experiments, weights for a fraction of nodes selected at 
random from the trained C- CNN or SN were set to zero. The lesioning 
factor is the fraction of nodes selected: a value of 1 denotes complete loss 
of nodes and a value of zero denotes no change to the nodes of the trained 
network. Lesioning factor values between 0 and 1 in increments of 0.05 
were evaluated; the accuracy results were based on averaging 5 lesioning 
experiments.

Contribution of individual facial landmarks
The contribution of facial landmarks was assessed for the SN by masking 
different combinations of the eyes and mouth. The DLib facial landmark 
identification algorithm was used to identify rectangular regions corre-
sponding to the eyes and mouth.14 The rectangular regions were black 
filled to create masks.

These experiments were conducted on the faces for 20 individuals 
(10 male and 10 female individuals). Seven copies of each face were 
created with the following masks: right eye, left eye, mouth, both eyes, 
left eye and mouth, right eye and mouth, and both eyes and mouth. 
The recognition accuracy across the different sets of masked faces was 
evaluated for SN.

Model evaluation with real- world data
Publicly available data from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI), a multicenter study with clinical, imaging, and ce-
rebrospinal fluid (CSF) protein biomarker measurements, were down-
loaded with the ADNIMERGE R package.15 Network Failure Quotient 
(NFQ) data were downloaded separately. NFQ and key prognostic AD 
biomarkers at baseline (e.g., CSF tau and amyloid β42 (Aβ42)), MRI- 
derived entorhinal cortex, hippocampus, and fusiform gyrus volumes, 
were categorized into quintiles for graphical analyses.

RESULTS
Baseline performance of the algorithms
C- CNN and SN, which are two distinctive AI architectures 
(Figure 1) proven effective for face recognition tasks, were 
evaluated.

C- CNN directly predict the subject of the test image with a 
classification strategy. C- CNN computes high probability val-
ues when the index image (Figure 2a, column 2) is matched to 
the same individual. In comparison, C- CNN probabilities are 
lower for other mismatched individuals; representative results for 
two female (Figure 2a, Columns 3– 4) and two male individuals 
(Figure 2a, columns 5– 6) are shown.

SN architecture consists of two identical networks that take 
two images as input and outputs a distance measure for their dis-
similarity. We created reference image sets of the front, left, and 
right profiles for each subject and used the minimum distance 
value to the test image. The SN distance for a representative fe-
male index image from the reference image for the same subject 
was 0.43 (Figure 2b, column 2). As expected, the distance of the 
index image from itself is zero (data not shown). The distances of 

ARTICLE
 15326535, 2023, 4, D

ow
nloaded from

 https://ascpt.onlinelibrary.w
iley.com

/doi/10.1002/cpt.2987 by U
niversity O

f C
alifornia, San, W

iley O
nline L

ibrary on [29/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://fei.edu.br/%7Ecet/facedatabase.html


CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 114 NUMBER 4 | October 2023 865

the female index image from images of two other female subjects 
were 5.08 and 5.48 (Figure 2b, columns 3– 4), and the distances 
from images of two male subjects were 5.97 and 8.95 (Figure 2b, 
columns 5– 6). In Figure 2c, the histogram of within- individual 
distances (lighter gray bars) is closer to zero and narrow, whereas 
the histograms of the distances of the index image from images 
of other female subjects (white bars) and male subjects (darker 
gray bars) are centered at greater distance values.

Repurposing face recognition algorithms to emulate 
neurodegenerative diseases

Effects of weakening. Weakening reduces node weights in the 
neural network and can be viewed as a computational analog for 
loss of neurological function in diseases. Figure 3a summarizes 
the effects of global weakening on the face recognition accuracy of 
C- CNN and SN. The accuracy of both networks decreased only 
gradually over the broad range of weakening factors between 0 and 
0.55 for C- CNN and 0 and 0.85 for SN. However, at higher values 
of weakening factors, greater rate of accuracy loss was observed. 
The onset of rapid loss occurred at ~ 0.55 for C- CNN and ~ 0.85 
for SN suggesting that the accuracy of SN was more robust to large 
weakening factors than C- CNN.

Figure 3b shows the effects of weakening that was restricted to 
all 3 convolutional layers; the dense layers were not weakened. The 
trends in Figure 3b were concordant with Figure 3a. This indi-
cates that the convolutional layers, which are involved in feature 
extraction, are important determinants of robustness of face rec-
ognition accuracy when weakening occurs. Figure 3c shows that 
the accuracy of the C- CNN and SN was relatively unaffected by 
weakening of all dense layers.

In Figure 3d, we assessed the effects of weakening of either the 
first, second, or third convolutional layers of the C- CNN and SN. 
The face recognition accuracy of the C- CNN was similarly af-
fected by weakening of any one of the three convolutional layers. 
The accuracy of the SN was more sensitive to weakening of the first 
convolutional layer vis- a- vis weakening of the second and third con-
volutional layers. The accuracy of the C- CNN and SN methods 
was relatively stable to weakening of the dense layers (Figure 3e).

Effects of lesioning. Node lesioning can be viewed as a 
computational analog for loss of neuronal cells in diseases. Weights 
for a fraction of nodes selected at random were set to zero causing 
deletion of these nodes and their incoming and outgoing edges.

Figure 4a shows the effects of increasing lesioning across all lay-
ers of the C- CNN and SN networks on face recognition accuracy. 

Figure 1 (a, b) are schematics of the architectures of the convolutional- classification neural network and the Siamese network (SN), 
respectively. Both the networks use three convolutional layers (denoted by CONV2D) with pooling. The convolutional neural network has a 
pooling layer after every convolutional layer whereas the SN directly flattens the input of the last convolutional layer before feeding it to the 
next dense layer. In (b), the reference images are selected sets containing left, right, and frontal view of each person. BN, batch normalization; 
FC, fully connected or dense layer; DO, dropout layer (used only during training); ReLU, rectified linear units. The subjects’ eyes are masked in 
the figure to protect privacy in the publication. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 2 (a) Is graphical montage summarizing representative probabilities obtained from the convolutional- classification neural network 
(C- CNN). The first column contains a reference image for the subject of the index image in column 2. Columns 3 and 4 contain images of 
2 other female subjects and columns 5 and 6 contain images of male subjects. The numbers below each image are probabilities obtained 
from the C- CNN. (b) Is a graphical montage summarizing representative distance (dissimilarity measure) results from the Siamese network. 
As in (a), the first column contains a reference image for the subject of the index image in column 2; columns 3 and 4 contain images of 2 
other female subjects and columns 5 and 6 contain images of male subjects. The gray bars in (c) show the probability density histograms 
for the distance distributions of the index image (column 1 in b) from other images of the same individual (within- individual or intra- class 
distances). The pink and blue gray bars are the probability density histograms for the distance distributions of the index image from the 
reference images of other female and male subjects, respectively. The subjects’ eyes are masked in the figure to protect privacy in the 
publication. [Color figure can be viewed at wileyonlinelibrary.com]
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The accuracy of the SN declined gradually across the entire range, 
but the accuracy dropped rapidly when nearly all the nodes were 
deleted. C- CNN accuracy declined rapidly when as few as 10% 
of the nodes were lesioned. Figures 4b and c show the effects of 
random lesioning that were restricted to the convolutional layers 
and dense layers, respectively. In Figure 4b, increasing loss of nodes 
in the convolutional layers caused declines in accuracy that were 
generally like those in Figure 4a, except that the declines were right 
shifted. The face recognition accuracy of the SN network was more 

robust to effects of lesioning on the dense layers (Figure 4c) than 
the C- CNN whose accuracy declined gradually. Figures 4d shows 
the effects of lesioning that were limited to first, second, and third 
convolutional layers of C- CNN and SN, respectively. Both C- 
CNN and SN were more sensitive to random lesioning of the first 
convolutional layer, which is proximal to the input. Interestingly, 
the C- CNN showed markedly increased noise in accuracy with 
increased node deletion that was not observed for SN. Figure 4e 
shows that C- CNN accuracy was more sensitive to lesioning in 

Figure 3 Effects of perturbing network weights on facial recognition accuracy. (a) Shows the effects of weakening the weights in every layer of 
the C- CNN (salmon lines and circle) and SNs (teal lines and circles). (b) shows the effects of weakening the weights of all the edges in all the 
convolutional layers in the C- CNN (salmon lines and circle) and Siamese networks (teal lines and circles). (c) Shows the effects of weakening 
the weights of all the edges in all the dense layers in the C- CNN (salmon lines and circle) and SNs (teal lines and circles). The facet plots in 
(d) shows the effects of weakening the weight of the edges in either convolutional layer 1 (salmon lines and circles), convolutional layer 2 (teal 
lines and circles), or convolutional layer 3 (blue lines and circle) for the C- CNN (left graph) and SNs (right graph). The facet plots in (e) shows 
the effects of weakening the weight of the edges in either dense layer 1 (salmon lines and circles), dense layer 2 (teal lines and circles), or 
dense layer 3 (blue lines and circles) for the C- CNN (left graph) and SNs (right graph). A fractional weakening value of zero corresponds to no 
changes to the trained network weights and 1 corresponds to complete elimination of the weights. C- CNN, convolutional- classification neural 
network; SN, Siamese network. [Color figure can be viewed at wileyonlinelibrary.com]
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dense layer 2 vs. dense layer 1; SN was relatively robust to lesioning 
in all dense layers.

Comparing effects of weakening vs. lesioning. For SN, the random 
lesioning (Figure 4) and weakening results (Figure 3) were 
qualitatively concordant; in both sets of experiments, the decreases 
in SN accuracy were gradual. C- CNN accuracy was degraded 
to a greater extent by random lesioning than weakening; the 
convolutional layers of the C- CNN were particularly affected by 

random lesioning. Overall, the results indicate greater robustness 
of the SN.

Contribution of individual facial landmarks
The contributions of individual facial landmarks were assessed 
for the SN (Table S1), which had greater robustness in our pre-
vious experiments. Masking an eye (46.2%– 59.0 accuracy) caused 
a greater loss in accuracy than masking the mouth (76.9% accu-
racy) compared with the control (no masking, 96.3%). However, 

Figure 4 Effects of random lesioning of network nodes on facial recognition accuracy. (a) Shows the effects of lesioning every layer of the C- CNN (salmon 
lines and circles) and SNs (teal lines and circles). (b) Shows the effects of lesioning in all the convolutional layers in the C- CNN (salmon lines and circles) 
and SNs (teal lines and circles). (c) Shows the effects of lesioning in all the dense layers in the C- CNN (salmon lines and circles) and SNs (teal lines and 
circles). The facet plots in (d) shows the effects of lesioning in either convolutional layer 1 (salmon lines and circles), convolutional layer 2 (teal lines and 
circles), or convolutional layer 3 (blue lines and circles) for the C- CNN (left graph) and SNs (right graph). The facet plots in (e) shows the effects of lesioning 
in either dense layer 1 (salmon lines and circles), dense layer 2 (teal lines and circles), or dense layer 3 (blue lines and circles) for the C- CNN (left graph) 
and Siamese networks (right graph). A fractional lesioning value of zero corresponds to no lesioning in the trained network and 1 corresponds to complete 
lesioning. C- CNN, convolutional- classification neural network; SN, Siamese network. [Color figure can be viewed at wileyonlinelibrary.com]
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decrease in accuracy from masking an eye and the mouth (35.9% 
accuracy) was comparable to masking both eyes (35.9% accuracy). 
The accuracy was lowest when both eyes and the mouth were 
masked (28.2% accuracy).

Model evaluation with real- world data

AD clinical outcomes and network failure quotient. The model 
simulation results were assessed using the ADNI data set for 
AD. The demographic characteristics of the ADNI sample 
are summarized in Table S2. The ADNI data set included 
neuropsychological test data from the Clinical Dementia Rating 
Sum of Boxes (CDRSB) scale for measuring severity of dementia, 
the AD Assessment Scale (ADAS) Cognitive- 11 (ADAS- 11), 
ADAS Cognitive- 13 (ADAS- 13), and Mini- Mental State 
Examination (MMSE) scales for cognitive function, and the 
Functional Activities Questionnaire (FAQ).

Because our simulations were focused on neural network edge 
weakening and deletion experiments, we selected the NFQ,16 
a robust biomarker of large- scale network failure derived from 
task- free fMRI. Figure 5a summarizes NFQ in the cognitively 

normal (CN), subjective memory complaints (SMCs), early mild 
cognitive impairment (EMCI), late mild cognitive impairment 
(LMCI), and AD diagnosis groups at baseline. NFQ values were 
progressively worse in the EMCI, LMCI, and AD groups, which is 
consistent with breakdown of neural signaling pathways. NFQ also 
increased across increasing age tertiles.

Figure 5b– f compare the effect of network weakening as as-
sessed by NFQ quintiles with key outcome measures used in AD 
clinical trials (i.e., CDRSB, ADAS- 11, ADAS- 13, MMSE, and 
FAQ). The strong associations of NFQ with AD cognitive out-
come measures underscore the importance of network integrity, 
which is a key factor in our AI model.

The pattern of deterioration of CDRSB, ADAS- 11, ADAS- 13, 
MMSE, and FAQ scores with increased NFQ quintiles was grad-
ual and resembled the patterns in SN simulations. We did not find 
evidence for the sharp deterioration in outcomes observed in C- 
CNN simulations.

Biomarkers and AD clinical outcomes. The progression of AD 
clinical symptoms is preceded by temporally ordered changes in 
prognostic CSF and MRI biomarkers.17 Abnormalities in CSF 

Figure 5 (a) Shows the mean values of the network failure quotient (NFQ) in cognitively normal (CN), subjective memory complaints (SMC), 
early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and Alzheimer’s disease (AD) groups at baseline. (b– f) Shows 
the dependence of NFQ quintiles on the key neuropsychological outcome measures: clinical dementia rating scale- sum of boxes score 
(CDRSB, b), ADAS- 11 (c) is the 11- item cognitive subscale of the Alzheimer’s disease assessment Scale (ADAS), ADAS- 13 (d) is the 13- 
item cognitive subscale of ADAS, MMSE (e) is the mini- mental status score, and the functional activities questionnaire (FAQ) (f). The bars 
represent mean values, and the error bars are standard errors. The highest and lowest quintiles of NFQ are indicated. Separate bar colors are 
used for lowest (red bars, tertile 1 < 70.7 years), intermediate (green bars, 70.7 years ≤ tertile 2 < 76.5 years), and highest (blue bars, tertile 
3 ≥ 76.5 years) tertiles of age at baseline. [Color figure can be viewed at wileyonlinelibrary.com]
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Aβ42 occur in the prodromal phase of AD, followed by increases 
in CSF tau and phospho- tau- 181. Atrophy resulting from the 
neurodegeneration triggered by pathological amyloid and tau 
deposition occurs early in the entorhinal cortex and spreads to 
the hippocampus at the mild cognitive impairment (MCI) stage. 
Subsequently, atrophy occurs at the fusiform gyrus, which is 
important for face recognition. Memory impairments precede the 
occurrence of dementia in AD.

Tau- amyloid β42 (tau- Aβ42) ratio was used as a CSF biomarker 
because tau (and phospho- tau- 181, which behaves similarly) is as-
sociated with MRI outcomes and Aβ42 decreases in AD. Baseline 
tau- Aβ42 ratio, and MRI- derived entorhinal cortex, hippocampus, 
and fusiform gyrus volumes in the CN, SMC, EMCI, LMCI, and 
AD diagnosis groups were worse in the more severe disease groups 
(Figure 6a– d).

Memory impairment, as assessed by the Rey Auditory Verbal 
Learning Test percent forgetting score (RAVLT%F), was greater 
in the SMC, EMCI, LMCI, and AD groups (Figure 6e). The 
CDRSB score of dementia severity was greater in the LMCI and 
AD groups (Figure 6f).

RAVLT%F worsened with increasing tau- Aβ42 ratio and de-
creasing entorhinal cortex and hippocampus volumes quintiles 
(Figure 6g– i); RAVLT%F dependence on fusiform gyrus vol-
ume quintiles was weaker in comparison, which is attributable 
to the role of this brain region in face recognition not memory 
(Figure 6j). CDRSB also worsened with higher tau- Aβ42 ratio, 
and lower entorhinal cortex and hippocampus volumes quintiles 
(Figure 6k– m). Worsening of CDRSB occurred primarily at the 
lowest quintile of fusiform gyrus volume (Figure 6n) likely be-
cause it is downstream of other prognostic MRI biomarkers in AD 
pathophysiology.

DISCUSSION
In this research, we evaluated the counterintuitive and contrarian 
strategy of systematically degrading the performance of effective 
AI methods to obtain model- based insights into face recognition 
deficits in neurodegenerative diseases.

It was challenging to obtain in vivo measures of network fail-
ure to assess our approach. We selected the NFQ as a measure 
of network failure; because NFQ is derived from resting fMRI, 
it is relatively independent of the other AD- relevant neuropsy-
chological measures in the ADNI data set.15 The US Food and 
Drug Administration requires the primary outcome measure in 
AD drug trials to include cognition and functioning.18 CDRSB, 
which measures both cognition and functioning, was the primary 

outcome in the trials of the anti- Aβ antibodies, lecanemab,19 and 
aducanumab,20 which received accelerated marketing approvals; 
ADAS- 11 or ADAS- 13, and MMSE were secondary outcome 
measures. We included the FAQ, as it explicitly assesses function-
ing. We also evaluated MRI data on the fusiform gyrus, which is 
important for face recognition. However, it would have been ideal 
to have a large data set with neuropsychological assessments of face 
recognition in prosopagnosia and AD.

Perceptual psychology experiments investigating face recogni-
tion by masking features in photographs have found that accuracy 
decreases substantially when eyes are masked.21– 24 Our results with 
masking of images are concordant with these findings. Interestingly, 
masking eyes has long been used to protect the identity of patients 
in medical photographs.

The size of our faces data set compares favorably with the esti-
mated value of 150 people for Dunbar’s number, the number of 
faces an average human can recognize by name.25 Dunbar’s num-
ber was obtained from evolutionary studies investigating social 
group size vs. neocortical volume26 but it has empirical support 
from other contexts.27 There is interindividual variability, how-
ever, and the Dunbar’s number estimate has very wide confidence 
intervals.25 The number of faces a person can recognize (~ 5,000) 
is much greater than Dunbar’s number.25

Public domain data sets, such as ADNI, have been a catalyst 
and accelerant for AI research in AD. Hojjati et al. used a neu-
ral network- based regression approach to predict the associa-
tions of MRI and PET biomarkers with cognitive decline in the 
ADNI data set.28 The best predictors of ADAS- 13 and CDRSB 
scores were entorhinal cortex and hippocampus volumes and 
fluorodeoxyglucose- PET intensities of the angular gyrus, tempo-
ral gyrus, and posterior cingulate regions. Stricker et al.29 found 
that mirrored cascaded architectures had superior performance 
characteristics vs. feed- forward neural networks in simulating 
word learning deficits. Grassi et al.30 used a diverse range of en-
semble machine learning to predict progression of patients with 
MCI to AD using demographic factors and neuropsychological 
test scores. Yang et al.31 used a semi- supervised generative adver-
sarial network to identify atrophy progression pathways in AD. 
Our research goals and experimental strategy differ fundamentally 
and distinctively from these prior AI works in AD. The under-
lying strategy was motivated by the clinical pharmacology work 
of Hwang et al.32 who leveraged systematic network disruption 
for drug target identification. Li et al.33 constructed GPT- D, a 
degraded version of the GPT- 2 transformer- based natural lan-
guage generator, and demonstrated that GPT- D was capable of 

Figure 6 (a– d) Respectively, show the bar graphs of tau to amyloid β42 (Aβ42) tau to amyloid β42 (Aβ42) ratio, entorhinal cortex volume, 
hippocampus volume, fusiform gyrus volume, which are prognostic CSF and MRI biomarkers in cognitively normal (CN), subjective memory 
complaints (SMC), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and Alzheimer’s disease (AD) groups at 
baseline. (e, f) Are the corresponding bar graphs for the Rey Auditory Verbal Learning Test (RAVLT) percent forgetting score, which measures 
memory, and the Clinical Dementia Rating Scale Sum- of- Boxes (CDRSB) scores, which is a dementia severity scale. The bar graphs in (g– j) 
plot the dependence of RAVLT percent forgetting score on quintiles of tau to Aβ42 ratio, entorhinal cortex volume, hippocampus volume and 
fusiform gyrus volumes. The bar graphs in (k– n) plot the dependence of CDRSB score on quintiles of tau to Aβ42 ratio, entorhinal cortex 
volume, hippocampus volume and fusiform gyrus volumes. The bars represent mean values, and the error bars are standard errors. The 
highest and lowest quintiles are indicated. Separate bar colors are shown for lowest (red bars, tertile 1 < 70.7 years), intermediate (green 
bars, 70.7 years ≤ tertile 2 < 76.5 years), and highest (blue bars, tertile 3 ≥ 76.5 years) tertiles of age at baseline. CSF, cerebrospinal fluid; MRI, 
magnetic resonance imaging. [Color figure can be viewed at wileyonlinelibrary.com]
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synthesizing speech patterns similar to patients with dementia.34 
Adamczyk utilized a degradation strategy that used weight scram-
bling during training and altered activation functions to emulate 
learning disability.35

We acknowledge that there are vast differences between AI 
deep learning neural networks and the human brain. The human 
brain has greater structural complexity, versatility, and functional 
capabilities. The AI method is reductionist and likely overly 
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parsimonious: for example, our current AI model is trained for a 
single task –  face recognition. However, neurological diseases can 
cause impairments in multiple cognitive domains and involve in-
teractions between different brain regions. Given the complexity 
of the brain, AI models should be used with caution as they could 
be simplistic and even inappropriate.

We evaluated the C- CNN and SN architectures reasoning 
that different approaches for solving a given task can have con-
vergent needs for certain shared features. Both C- CNN and SN 
use convolutional layers for feature extraction but use distinct 
strategies. The C- CNN architecture has a single neural network 
and uses classification, whereas the SN, which was more robust 
to perturbation, has twin networks and uses pairwise similarity. 
We attribute the performance differences to these distinctive 
architectures and recognition strategies. In disease modeling, 
functional robustness resulting from network architecture and 
topology could relate to the variability of age of symptom onset, 
and to physical resilience, the ability to maintain function during 
aging and disease.36

A potential criticism is that the weakening and lesioning exper-
iments were conducted in a subset of 20 subjects to manage com-
putational burden given the number of comparisons, weakening/
lesioning levels, replicates, and network layers. To assess generaliz-
ability differences, we conducted the weakening (Figure 3a) and 
lesioning (Figure 4a) experiments for the C- CNN with all 200 
subjects and found similar results (data not shown). As loss of ac-
curacy is to be expected when trained AI models are perturbed, 
the findings from our weakening and lesioning experiments might 
be inadvertently viewed as unsurprising. However, because AI 
methods differ in their face recognition effectiveness, robustness, 
algorithmic frameworks, and architecture, the performance will 
deteriorate at different rates when perturbed, and certain com-
ponents in the architecture may be important determinants of 
accuracy. For example, models that are too parsimonious may be 
sensitive to small perturbations whereas models with excessive 
complexity may not generalize. The utility of our strategy is de-
rived from the investigating the dependence of accuracy loss on the 
extent of weakening and lesioning. An additional limitation is that 
our current approach is not a disease progression model because 
time is not an explicit predictor in the modeling: the CN, SMC, 
EMCI, LMCI, and AD groups used are disease stages with increas-
ing severity of cognitive impairment. The time to progression be-
tween stages does not occur at the same rate and has interindividual 
variability. The variability is only partly explained by neurodegen-
eration measures from structural MRI (e.g., entorhinal cortex and 
hippocampal atrophy) because brain reserve differences, which are 
harder to measure, also contribute.17

Our computational experiments provide proof- of- concept for 
the strategy of perturbing neural networks to obtain models for 
neurological diseases. The AD results show that failure of neu-
ral signaling networks due to neurodegeneration can account for 
cognitive deficits, such as face recognition, that are important for 
patient functioning. This may represent an innovative strategy 
for building AI models for other cognitive outcome measures. 
Rigorous research and scientific equipoise are warranted regarding 
the potential of AI models for clinical applications.

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
Pharmacology & Therapeutics website (www.cpt-journal.com).
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